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ABSTRACT 

Recursive and nonrecursive least mean square adaptive filters were used to predict the output of 

various mechanical systems for a given input. The effects of quality factor (Q), dispersion and 

transmission time on adaptive filter performance were investigated. Optimal filter delay times and tap 

weight vector lengths were determined. 
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L INTRODUCTION 

This work is a result of investigations into methods of eliminating own ship vibrations from 

submarine conformal sonar arrays. Future arrays may utilize hydrophones that respond to a sound wave's 

velocity in place of traditional pressure sensitive hydrophones. In order to detect an incoming signal with 

such a hydrophone it is necessary to remove signals due to own ship vibrations from the hydrophone's 

output. Previously this has been accomplished using large metal plates to damp ship vibrations. Because 

of the high cost and weight of these plates, it is desirable to instead electronically remove own ship 

vibration signals from the sensor output. 

Because of changing machinery lineups, ship speed, depth and other time varying parameters, 

traditional fixed filters are not adequate to remove own ship vibration signals from the hydrophone output. 

One method of dealing with systems with time varying characteristics is with adaptive filter algorithms 

which continuously generate an optimal impulse response describing the physical system. Adaptive filters 

have been used in acoustic noise cancellation and in system identification for several years [Ref. 1,2]. 

In this project both recursive (IIR) and nonrecursive (FIR) filters were used to predict the output 

of the following mechanical systems: 

1. Torsion waves in an undamped aluminum rod (a high Q system) 

2. Torsion waves in a damped plastic rod (a low Q system) 

3. Flexural waves in a damped aluminum rod (a dispersive system) 

4. Flexural waves in a damped plastic rod (a dispersive system) 

5. Longitudinal waves in a plastic bar (a nondispersive system) 

6. Longitudinal waves in a plate (a high Q, multipath system) 

7. Longitudinal waves in a metal ring (a high Q, multipath system) 



It is hoped that the results of these experiments on the effects of system physical parameters on 

adaptive filter performance can also be applied to more advanced methods of system identification. 



IL BACKGROUND THEORY 

A.   THE LEAST MEAN SQUARE ALGORITHM 

An adaptive filter is a filter that has the property of adjusting its characteristics in response to 

varying system characteristics. The adaptive filter algorithm generates an impulse response, w(t), 

describing a system and continuously refines it based on measured system inputs and outputs. Adaptive 

systems have many applications including prediction, system identification and interference cancellation. 

In this study adaptive filters utilizing the least mean square algorithm are used to predict the output of 

simple mechanical systems for a given input signal. A block diagram is shown below: 

Mechanical System 

System V h(t) 
Input xftj ? System 

Output 
yfö            ;J 

+ 
< 

Ai 

error eft] 

laptive filter Algorithm                       ' 

/      Estimated Output 

I 

-         /wW 
ye(t) 

/ 

Figure 1 Adaptive System Identification Diagram 

The adaptive filter algorithm generates an optimal impulse response to approximate the behavior 

of a physical system which has an impulse response h(t). In this study the physical system is simply a 

vibrating piece of plastic or aluminum excited by broadband noise. These systems in general act like low 



pass filters in that they attenuate high frequency vibrations more than low frequency vibrations and are 

thus easily modeled by adaptive filters. 

Adaptive filters require a "desired response" in order for the filter to develop this optimal impulse 

response. In this case, the desired response is the output of the physical system, y(t). The adaptive filter 

also utilizes an error signal, y(t)-ye(t), where ye(t) is the adaptive filter output. In this system 

identification application the least mean square algorithm is used to implement the adaptive filter. The 

following is an outline of how this algorithm is developed [Ref. 3]. 

The error signal produced in the adaptive algorithm is 

e(t)=y(t)-ye(t), (1) 

where y(t) is the output of the physical system and ye(t) is the adaptive filter's estimate of that output. The 

estimated output, ye(t), is determined by multiplying the input x(t) by the estimated impulse response w(t). 

The vector w(t) is initially all zeros but is developed into an estimate of the actual impulse response h(t) 

by the adaptive filter algorithm. Using the tap weight vector of the adaptive filter, w(t), in Eq. 1 results 

in: 

e(t)= y(t)-x(t) Sv(t )=y(t)-wt(t)x(t). (2) 

Dropping the time dependence for clarity, the error squared is: 

e2=y2-Hiv,xxV-2yxSv. (3) 

Taking the expected value of both sides: 

E[e2]=E[y2]-wtE[xxt]w-2E[yxt]w- (4) 

This expression can be simplified by defining the input correlation matrix, R=E[xxl], and the cross 

correlation matrix P=E[yx]. Utilizing these definitions in Eq. 4 results in an expression for the Mean 

Square Error (MSE) 

MSE=E[e2]=E[y2]+wtRw-2py (5) 



which shows that the error squared is a quadratic function of the tap weight vector w. A plot of a MSE 

function, known as an error performance surface, is shown in Fig. 2 using a tap weight vector length of 

two. The MSE is plotted on the vertical axis while the horizontal axes represent possible values of the first 

and second elements of the two element tap weight vector. When the tap weight vector contains more than 

two elements the performance surface becomes a hyperparaboloid. The point at the minimum value of the 

parabolic performance surface corresponds to the optimal tap weight vector values. In this application 

this point is the best estimate of the actual impulse response of the physical system being investigated. 

0     0 W1 wo 

Figure 2    Error Performance Surface for Tap Weight Length = 2 



In order to find this minimum value of the performance surface where error is minimized, the 

least mean square (LMS) algorithm is used. Other methods are available but the LMS algorithm is one of 

the most widely used methods in adaptive filtering mainly because of its simplicity and ease of 

computation (the method does not require matrix inversion). 

The LMS algorithm utilizes the error defined in Eq. 2. The time index, t, has been replaced with 

k to represent time in this digital representation of the algorithm: 

etk^OO-w'OOxOc). 

By using e(k)2 from Eq. 3 as an estimate of the mean square error in Eq. 5 the gradient can be estimated 

by: 

Ve2=[5e/5w]2 =2e[de/dw]=-2etx, (6) 

where 5e/5w=-xl from Eq. 2. 

This equation is then used in a steepest descent type of algorithm for determining the adaptive 

filter coefficients: 

w(k+l)=w(k)+u(-Ve2)x(k), (7) 

where u is a positive step size parameter that controls the rate of convergence to the optimal filter tap 

weights. Combining Eq. 6 and Eq. 7 results in 

w(k+l)=w(k)+2ue(k)x(k). (8) 

This equation is the basis of the LMS algorithm. It does not require inversion, multiplication or 

squaring of a matrix. 



B.       INFINITE IMPULSE RESPONSE AND FINITE IMPULSE RESPONSE FILTERS 

Finite Impulse Response (FIR) filters utilize current and past values of the system input to predict 

system output. In a FIR implementation of an adaptive filter, system output values are utilized only as the 

desired output signal. In Infinite Impulse Response (IIR) filters, the tap weight vector operates on current 

and past values of both input and output values of the system in addition to using the system output as the 

desired signal. This means that in an IIR filter in this application, both x(k) and y(k) are multiplied by the 

tap weight vectors to produce ye(k) where k is the discrete time index. For example in an FIR filter: 

ye(k) = [xi x2 x3 . .. xj [ wi w2 w3 ... wt]\ 

whereas in an IIR filter the estimated output is determined from x(k) and y(k): 

yeCk^Ck) w(k) + y'(k) w'(kt), 

where w'(k) is an additional weighting vector for the system output values. In a discrete time system this 

would be represented by: 

ye(k) = [x, x2 x3... xL y, y2 y3 . . . yL]' [ W] w2 w3.. .wL w'i w'2 w'3 .. .w'L]. 

Stability is an important consideration in IIR filters because they may become unstable due to the 

presence of a denominator term in their transfer function [Ref. 8]. They may also have nonquadratic error 

surfaces or error surfaces containing local minimums. It is for these reasons that IIR filters are seldom 

utilized in conjunction with the LMS algorithm. However, as will be discussed in the results section, IIR 

filters offer a performance improvement without stability problems for system identification of the 

nondispersive mechanical systems investigated in this project. 



C. MISADJUSTMENT 

Misadjustment is the ratio of actual mean square error to the mean square error that would be 

present if the filter coefficients were optimal (at the bottom of the parabolic error performance surface). 

Because the LMS algorithm is continually refining the adaptive filter tap weight vector, the MSE 

fluctuates about the minimum point on the error performance surface after the filter has converged 

(convergence meaning that the tap weight vector has adjusted itself to values corresponding to the 

minimum of the error surface). As shown in reference 4, misadjustment is linearly proportional to both 

the convergence parameter u and the tap weight vector length L. 

As u gets bigger, the LMS algorithm tends to converge faster due to the larger step size. Once 

the algorithm converges on a minimum error, further iterations cause the solution to move erratically 

about the minimum point. A small u will minimize the magnitude of these fluctuations about the 

minimum MSE but will slow the initial convergence to this minimum. 

As L increases, the effect of a given size step down the performance surface also increases. When 

L is increased (more terms added to the estimated impulse response) the fluctuations around the minimum 

MSE have a larger effect on the filter coefficients and thus increase the misadjustment error. 

D. WAVES IN BARS AND PLATES 

This project used adaptive filters to identify the impulse response of vibrating bars, plates and 

rings. Both dispersive and nondispersive vibrations were studied. 

In the first part of the experiment, torsion, flexural and longitudinal waves were selectively 

excited electromagnetically in plastic and aluminum rods [Ref. 5]. The rods were in a free-free condition 

(both ends free to move). Torsional or longitudinal excitation results in harmonic modes of vibration 

described by: 

fn=nc/21 (9) 



n=mode mimbei=l, 2, 3... 

C=CT (torsional wave speed) or ci (longitudinal wave speed) 

l=length of bar 

Flexural waves are dispersive, which means that their wave speed is a function of frequency. 

Free-free boundary conditions were again used which resulted in nonharmonic modes of vibration given 

by: [Ref. 5] 

4=jm2c*/812 (10) 

n=(3.0112, 4.9994, 7.0000, 9.0000...) 

k=radius of gyration = radius/2 for a round bar 

l=bar length 

Wave propagation speed is frequency dependent for dispersive waves with wave speed given by: 

c=(27rfc,k)1/2 (11) 

E.        THEORETICAL OPTIMUM IMPULSE RESPONSE 

The optimal frequency response (which is the Fourier transform of the impulse response) for 

single input, single output systems is conventionally computed from [Ref. 7] : 

K(f) = G^(f)/Gn(f) (12) 

Gxy (f) = one sided cross spectral density 

Gxx (f) = one sided auto spectral density 

As will be discussed in the results section, adaptive filters produced a better estimate of the 

impulse response of the simple systems investigated here than an impulse response determined by taking 

the inverse FFT of the result of Eq. 12. 
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m. EXPERIMENT 

A.   ELECTRODYNAMIC TRANSDUCTION 

Electrodynamic transduction was utilized to generate longitudinal, torsional and fiexural waves 

in circular bars. [Ref. 6] 

1 "1   PERMANENTMAGNET  I 

COIL [| h RAR                                                  ff            II COIL 

1 1 1        1 

1 
^-1 SPECTRUM 

ANALYZER 
PREAMP 

IP 

AND 
HIGH 

POWER AK PASS 
FILTER 

FUNCTION GENERATOR 

Figure 3a Electrodynamic Transduction 

A coil of about 20 turns of thin wire was wrapped around each end of the bar. Each end of the 

bar was then placed in a magnetic field created by the two permanent magnets on each end. As shown in 

Fig. 3b and 3c, by changing the relative orientation between the permanent magnets and the coil, different 

types of waves can be induced in the bar. For example, to induce torsional waves in the bar the rod is 

arranged such that the coil is lying flat in the horizontal plane perpendicular to the magnetic field between 

the two magnets on either end. Using the right hand rule this will cause the long sides of the coils (which 

are rigidly attached to the bar with epoxy) to oscillate up and down when an AC current is passed through 

the coils. [Ref. 6] 
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Orientation of the coil and magnet pole pieces for the transduction 
oi tne lorsional mode. The arrows indicate the magnitude and direction of 
•he electromagnetic forces on the two dominant sections of the coil for a 
given phase of driver current. The forces produce the moment that excites 
•he torsional oscillations. 

Orientation of the coil and magnet pole pieces for the transduction 
of the fiexural mode. The arrows indicate the magnitude and direction of 
the electromagnetic forces on the two dominant sections of the coil for a 
given phase of driver current. The lower section of the coil is in the stronger 
region of the magnetic field and hence exerts a greater force on the bar than 
the upper section of the coil, as indicated by the shorter arrows above the 
bar. This leads to a net force that excites the fiexural mode. 

Figure 3b  Magnet-Coil  Orientation for Torsion  and Fiexural Waves  (From Ref.  6) 
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Orientation of the coil and magnet pole pieces for the transduction 
of the longitudinal (extensional) mode. Note that the pole pieces have been 
rotated by 90° to concentrate the magnetic field just beyond the end of the 
bar. The arrows indicate the magnitude and direction of the electromagnet- 
ic forces on the dominant section of the coil for a given phase of driver cur- 
rent. Since this section of the coil at the end is shorter than the other sections 
used to drive the torsional and fiexural modes, it is useful to reduce the 
amount of stray magnetic field that links the other portions of the coil if the 
longitudinal mode spectrum is not to be "polluted" by the presence of the 
torsional modes. 

Figure 3 c Magnet-Coil Orientation for Longitudinal Waves (From Ref. 6) 
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The input signal into the input coil and the amplified output signal were recorded using 

LabVIEW [Ref. 11] on a Macintosh Quadra 800 computer with the input and output sampled at 48 kHz. 

The input signal into the bar was provided by the HP 3 562A spectrum analyzer or a function generator. 

Plastic bars (Nylon) provided the best results for the purposes of this project because of its low 

Young's and Shear moduli. This results in a lower sound speed in the material which makes analysis 

easier on the short pieces of material (less than a meter long) that were used in this investigation. Copper 

and aluminum bars were tried but analysis was difficult because the waves traveled down the bars too fast. 

Torsion waves were found to be useful for investigating nondispersive waves because they have a 

lower sound speed than longitudinal waves. This is due to the fact that a material's shear modulus is in 

general smaller than its Young's modulus. 

B. SHAKER TABLE 

In a second experiment, flexural waves were generated in a horizontal 2.54 X 2.54 X 68 cm 

plastic bar by displacing one end of the bar vertically with a shaker table. The input signal was taken from 

an accelerometer bolted directly on the shaker table. The output was measured with an accelerometer 

bolted vertically on the free end of the bar. The small difference in motion between the input 

accelerometer mounted on the shaker table and the end of the bar which was attached to the shaker table 

was considered to be part of the impulse response to be modeled by the adaptive filter. 

C. PIEZOELECTRIC TRANSDUCER 

In the final experiment, two small, home made piezoelectric transducers were superglued to the 

sides of a 62.4 X 15.2 X 1.5 cm aluminum plate. It was necessary to use both a low noise preamplifier 

and a power amplifier for the output because of the low sensitivity of these PZT transducers. As before, 

the input and output signals were recorded using LabVIEW. One of the disadvantages of using the PZT 
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transducers is that they tend to attenuate low frequency signals. This is because the transducers have little 

of the mass loading which would be required for them to operate at low frequencies. [Ref. 13] 

The accelerometers were also used to excite waves in an aluminum ring. The PZT input and 

output transducers were attached about 90° apart on a 2 cm thick, 10 cm wide aluminum ring with a 17 

cm mean diameter. The ring was made out of two half cylinders which were bolted together. This 

boundary between the half cylinders had the effect of adding more propagation paths to the system (the 

reflected and transmitted paths at the boundary). The ring was suspended from ring stands with flexible 

cord to eliminate boundary effects that would be present with the ring laying on a table. 

As will be discussed in the results section, it was often necessary to damp the mechanical 

systems to lower their Q factor. This was accomplished by wrapping the material with vinyl electrical tape 

and then with damping tape (a heavy metal tape). The electrical tape provided a compliance while the 

damping tape provided both compliance (the sticky part of the tape) and mass (the metal part of the tape). 

The adaptive filters used to estimate the impulse responses of the mechanical systems were 

implemented in Matlab [Ref. 12] using the system input and output data imported from LabVEEW. 
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IV. RESULTS 

A.       ADAPTIVE FILTER PERFORMANCE FOR SYSTEMS EXCITED WITH PERIODIC 

SIGNALS 

The input signal used in most of the experiments was white noise. Whenever any type of periodic 

signal was used for input (sine wave, square wave or sawtooth wave) the adaptive filter predicted the 

system output nearly perfectly for both dispersive and nondispersive systems. Figure 4a demonstrates this 

for the case of a damped (Q=8) plastic bar being driven with torsion waves at its resonant frequency of 1.5 

kHz. Figure 4b demonstrates excellent performance for the same plastic bar being driven with flexural 

square waves at a flexural resonant frequency of 580 Hz. 

It is interesting to note the response of the plastic bar to the square wave input. A square wave 

can be thought of as a summation of sine waves. Because the bar acts as a low pass filter only the lowest 

frequency component of the square wave (a 580 Hz sine wave) is present at the output. Higher 

components are not likely to land on other flexural resonances because of the nonharmonic nature of 

dispersive flexural waves as shown by Eq. 10. Also note that in this example an adaptive filter tap weight 

vector only 24 samples long is adequate to produce an estimated output with low error even though the 

output is a sine wave that has a period equivalent to about 82 samples. 

The adaptive filters converged (convergence meaning that the tap weight vector has adjusted 

itself to a steady value near the bottom of the performance surface) in less than 16000 iterations for all of 

the experiments, which corresponds to 0.33 seconds at a 48 kHz sampling rate. 

Convergence times were determined by observing the adaptive filter behavior for steady 

sinusoidal inputs. This ensured that the impulse response of the physical system remained the same during 

the experiment. Using a random noise input may have excited different types of waves in the bar such as 

torsion waves and flexural waves. Figure 5a shows the fractional error for sine wave induced flexural 

waves in a plastic bar converging in about 3500 iterations (equivalent to 73 ms at a 48 kHz sampling rate) 

17 
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Figure 4a   1.5 kHz Torsion Wave in a Plastic Bar 
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Figure 4b   580 Hz Flexural Wave in a Plastic Bar 

19 



to a steady error that is due primarily to misadjustment. The fractional error is the difference between the 

estimated and actual outputs divided by the average rms value of the actual output. The convergence can 

also be seen by plotting the log of the fractional error to see where the error settles on a steady value as in 

Fig. 5b. 

Figure 5c shows the convergence of a 580 Hz torsional square wave in the same plastic bar 

which is below resonance for a torsion wave. Convergence occurs in about 8000 iterations (167 ms at a 

48 kHz sampling rate). Figure 5e shows the convergence using the damped aluminum ring being excited 

at 8.08 kHz which is its first resonant frequency. Convergence takes much longer, at least 250 ms, 

apparently because of the multiple propagation paths present in the ring, all of which must be modeled by 

the tap weight vector. The high Q of the ring (about 1000 even after damping) also slows convergence 

because vibrations in high Q systems decay slowly resulting in many passes of the signal being present at 

the output transducer. These two factors also account for the poor performance of the algorithm in 

finding an impulse response that accurately predicts system output. 

The convergence times for waves in the plastic bar can be compared to several characteristic 

times associated with the bar. The one way propagation time for both torsional and flexural waves from 

the input coil to the output coil is one of these characteristic times. Another is the relaxation time of the 

oscillating bar which is the time necessary for the motion of the freely oscillating bar to decay to 1/e of its 

initial amplitude. Relaxation time is computed from [Ref. 14] 

T = 2Q/ü)0 (13) 

where ©0 is the natural frequency in radians. A third characteristic time is the "characteristic dispersion 

time" which is derived in the appendix. This is the time required for the second mode to dephase by nil 

with respect to double the frequency of the fundamental mode as a result of the dispersion. These 

characteristic times are shown below for the 0.444 m long plastic bar using measured values for torsional 

and longitudinal wave speeds of 1047 m/s and 1425 m/s respectively (longitudinal wave speed is used in 

Eq. 10 in the calculation of flexural wave speed). 
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Figure 5a    Adaptive Filter Convergence for Flexural Waves in a Plastic Bar 
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Figure 5b    Adaptive Filter Convergence for Flexural Waves  in a Plastic Bar 
(Log  Plot) 
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Figure 5c    Adaptive Filter Convergence for Torsion Waves in a Plastic Bar 
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Figure 5d     Adaptive Filter Convergence for Torsion Waves in  a Plastic Bar 
(Log   Plot) 

24 



\ r _j p_ 

8.08 kHz Sine Wave Excited Waves in an Aluminum Ring 

Tap Weight Length = 24 

0 0.2 0.4        0.6        0.8 1 1.2 1.4 1.6 1.8 
Iteration x10 

Figure  5e     Adaptive Filter Convergence  for Waves  in  an  Aluminum Ring 
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Figure  5f    Adaptive Filter Convergence  for Waves  in  an  Aluminum Ring 
(Log  Plot) 
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Wave Type Time to Converge 
to Steady State 

Propagation Time Tdecay-2Q/©0 
Characteristic 
Dispersion Time 

Torsional 
Flexural 

42 msec 
73 msec 

0.416 msec 
10.8 msec 

2.3 msec 
27.3 msec 

3.4 sec 
4.0 msec 

Table 1 Characteristic Times of the Plastic Bar 

It is difficult to come up with a meaningful propagation time for the aluminum ring because of 

the multiple propagation paths present in the ring. However, the input and output transducers were 0.07 m 

apart which resulted in a 0.013 ms propagation time for longitudinal waves traveling in a direct path 

between the two transducers. 

B.   TAP WEIGHT VECTOR CONVERGENCE 

The value of the step size parameter u is important in ensuring that the adaptive filter will 

converge to a steady tap weight vector solution for systems with time varying impulse responses. The basis 

of the LMS algorithm is Eq. 8: 

w(k+l)=w(k)+2ue(k)x(k). 

The step size u determines how big a jump down the error performance surface is taken during each 

iteration. The jump must be small enough to ensure that the solution (the tap weight vector w) can reach 

the bottom of the parabolic performance surface. (As the parabolic error performance surface flattens near 

its minimum, big jumps on the surface during each iteration are likely to miss the optimal solution) On 

the other hand, u must be large enough to allow the filter to converge on a good tap weight vector 

solution as quickly as possible. 

Since u must not be too small nor too large, it is convenient to have some way of adjusting u to a 

value that will ensure convergence in a reasonable amount of time even if the impulse response changes. 

This was accomplished by using a u of variable size. The size was adjusted as a function of the error 

between predicted and actual output with each iteration [Ref. 10]: 
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u(t) = u0(l-ßye-(1/2)'OTOlA2), (14) 

where ß and y are constants that control the rate of convergence. Note that u has units of inverse power. 

This function is plotted in Fig. 6a using a variety of values for ß and y. A value of Uo of 0.05 was found 

to work well for the simple mechanical systems investigated here. Reducing u prevents the solution (the 

tap weight vector values) from moving too far around the performance surface minimum after 

convergence and producing erroneous results. Since this choice of u is a function of error squared the step 

size will increase when the error is large, such as when the physical system changes, which is desirable to 

aid in quick adaptation to a new optimum tap weight vector solution. 

Figure 6b demonstrates the ability of the u to change when the impulse response changes. In this 

case the transfer function was altered at sample 2400. At this point the output data record was multiplied 

by a factor of 20 leaving the phase unchanged (the actual physical system was not altered). Eq. 14 was 

utilized to adjust u to quickly find a new impulse response to reduce the squared error. Fig. 6c 

demonstrates what happened when a constant u was used and the impulse response changed at the 2400th 

sample. The error squared grew very quickly because the tap weight vector of the adaptive filter was not 

able to converge onto the bottom of the error performance surface. 

C        TAP WEIGHT VECTOR LENGTH AND INPUT LAG TIME 

The adaptive filter algorithm used in this application uses the system input x(t) and the error 

signal between the desired signal y(t) and the adaptive filter output ye(t) to determine w(t), the estimated 

impulse response of the mechanical system. Because propagation of the vibration wave from the input of 

the mechanical system to the output takes a certain amount of time, the algorithm is using information 

from mismatched times. From Eq. 8 the changes in w(t) are proportional to the product of the output 

error, derived from outputs due to an input signal at a previous time, and the system input from the 

present time. Thus it should be possible to delay the input signal x(t) by: 
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delay = Propagation Distance / Wave Speed in Medium (15) 

before it is used in Eq. 8 to improve performance. 

The propagation time in each of the different systems was measured using the HP 3 562A 

Spectrum Analyzer. In the following example torsion waves were electromagnetically induced in a 

damped plastic bar with a broadband noise input. The analyzer first determined the complex frequency 

response of the system and then took the inverse FFT of it to determine the impulse response. The 

different torsional modes of the system can be seen in the frequency response on the far left of the plot on 

the bottom of Fig. 7. The upper part of Fig. 7 shows the impulse response. Because the impulse response 

is proportional to the cross correlation between the input and output, peaks in the impulse response 

correspond to the arrival time of a wave at the output. [Ref. 7] The first pulse represents the propagation 

time of the initial torsion wave traveling down the bar and gives the propagation time for a wave traveling 

once down the length of the bar. The second peak represents a wave traveling down the bar, reflecting off 

the output end, traveling back towards the input end of the bar and then back to the output end of the bar. 

The rest of the peaks represent further reflections from the ends of the bar, their magnitudes progressively 

decreasing as the wave attenuates and spreads out in time due to dispersion (Even though the waves were 

generated as nominally nondispersive torsion waves, some dispersion occurs because of the non ideal end 

conditions on the bar due to the imperfect electromagnetic coil transducers.) 

The first peak begins at 424 usec which means that the torsion waves travel down the bar in this 

amount of time. Since the bar is 0.444 m long this results in a torsional wave speed of: 

0.444 m / 424 usec = 1047 m/sec 

This corresponds to a theoretical value for torsional wave speed determined from: 

c = (G/p)1/2 

c = (0.4 X 1010 / 1200),/2 = 1080 m/sec 

Where G is the shear modulus of the bar. 
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Figure 8a shows that delaying the x(t) input to the adaptive filter as suggested by Eq. 16 can 

improve the performance of the adaptive filter when modeling torsional wave propagation in the damped 

plastic bar. This plot shows that when x(t) is delayed by about 20 samples the adaptive filter performance 

improves for four different tap weight vector lengths. The average error shown is for the last 200 

iterations of a 4800 iteration experiment since this represents filter performance after it has converged on 

a solution. At the 48 kHz sampling rate used in data collection, 20 samples corresponds to 411 

microseconds, which is close to the propagation time measured using the impulse response. 

Figure 8b shows a similar result for a 0.92 meter long undamped aluminum rod through which 

torsion waves are propagating. The aluminum has a much higher Q than the damped plastic bar (600 for 

aluminum and 8 for the plastic) which could be why the plots are not as smooth as the one for plastic. 

Torsional wave speed in the bar is 2980 m/s which results in an optimal delay of 0.92m / 2980m/s = 0.31 

milliseconds. This corresponds to an expected minimum error at a lag of about 15 samples at a 48 kHz 

sampling rate which is close to the results seen in Fig. 8b. 

As the tap weight vector length L is increased the minimum error decreases as does the amount 

of lag necessary to achieve the best filter performance. This is because as the tap weight length increases 

the input does not have to be delayed as much for the tap weight vector to account for the propagation 

time of vibrations through the system. This is demonstrated by the "minimums" in the error squared 

stretching out towards zero lag time as the tap weight vector length is increased. Each element of the tap 

weight vector represents 1/fs (fs=sampling rate) seconds of time. 

Figures 9a and 9b show results for dispersive flexural waves generated in a plastic bar for L=128 

and L=228 respectively. The minimums occur after a longer lag because the wave speed for flexural 

waves is slower than for torsional waves in this material. The minimum at a lag of about 300 samples 

corresponds to the travel time of the first flexural mode of the bar (the slowest of the flexural modes). This 

lag time can be predicted by computing the first resonant frequency from Eq. 10: 

f, =7t (2187) (0.00318) (3.0112)2/ 8 (0.444)2 =126 Hz, 
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where fi is the frequency of the first dispersive mode using a longitudinal wave speed of 2187 m/s, a 

radius of gyration of 0.00318 and a length of 0.444 m. FromEq. 11 the speed of the first mode is: 

d = [2TI (126) (0.00318)(2187)]1/2 = 74 m/sec. 

This results in a travel time that corresponds to a lag of 287 samples which is quite close to the result in 

Fig. 9. The error with zero lag is smaller than the value that would be expected when propagation time is 

taken into account because of the dispersive nature of the wave which causes it to spread out in time as it 

propagates. This apparently makes it difficult for the adaptive filter to model the mechanical system with 

a relatively short tap weight vector. 

Figure 10 shows the effect of delaying the input to the adaptive filter for the case of the 

aluminum ring. Apparently, because of the multiple propagation paths present in the ring and its high Q 

(about 1100), delaying the input does not improve filter performance. The periodic nature of the result 

(about 3 samples between the weak minimums) does, however, correspond to the propagation time 

between the input and output transducers mounted on the ring. Similar results were obtained for the 

experiment utilizing PZT transducers mounted on an aluminum plate excited by broadband noise. 

As discussed in the background theory section, tap weight length cannot continue to grow 

indefinitely to reduce error because of misadjustment error which is proportional to the tap weight vector 

length. Figure 11 demonstrates this for the case of broadband noise exciting torsional waves in the 

damped plastic bar. Error squared initially decreases with increasing tap weight length then increases as 

misadjustment error begins to dominate. The input signal x(t) was not delayed for this example. The first 

large drop in the error squared occurs at a tap weight length of about 20. The 20 tap weights at a 48 kHz 

sample rate correspond to 20 X l/48kHz = 416 microseconds which is the propagation time for a 

torsional wave traveling from one end of the bar to the other. A tap weight vector more than 20 elements 

long is thus adequate to model the first wave reaching the end of the bar. The second large drop in the 

error squared occurs at a tap weight vector length of about 60 which corresponds to the wave traveling 

down the bar, reflecting off the end, then traveling down and back up the bar. 
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When periodic inputs were used, the predicted output increased drastically as the tap weight 

length was increased past a certain length using both the recursive and nonrecursive filters. It was evident 

that this effect was due to something other than misadjustment error which causes error squared to 

increase about linearly with tap weight length after reaching some minimum value as shown in Fig. 11. 

The performance of the adaptive filter improved as the tap weight vector length L got longer until a 

certain value past which the filter was unable to generate a stable solution. This value of L depends on u; 

decreasing u increased the maximum value of L for which the adaptive filter produced a stable solution. 

An example of this phenomenon is shown in Fig. 12a. A 580 Hz square wave was used to drive 

fiexural waves in a damped plastic bar with the step size parameter u initially set to 0.05. It can be seen 

that increasing the tap weight vector length improved the performance of the adaptive filter until a tap 

weight vector length of 155, above which the adaptive filter did not produce a stable solution. When u 

was reduced to 0.04 in Fig. 12e-g, the filter provided a stable solution when a tap weight vector as long as 

166 was used, above this value an unstable solution was again generated 

D.       SYSTEM Q 

Q is the quality factor or "sharpness" of a resonance. It is equal to In times the ratio of the energy 

of an oscillator at resonance to the energy dissipated per cycle. It plays an important role in the 

performance of the LMS algorithm because high Q systems have very sharp resonances which are 

described by very long impulse responses. When these impulse responses are longer than the tap weight 

vector, the filter is insufficient to model the physical system and large errors between predicted and actual 

output result. 

The Q of the undamped aluminum bar was about 700 while the Q of the undamped aluminum 

plate was about 2800 (The Q was determined by dividing the resonant frequency by the width of the peak 

at its -3 dB down points). At these high Q's the filters performed quite poorly and were unable to 
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converge on an optimal tap weight vector. Filter performance for the aluminum plate improved steadily 

as the Q was decreased by adding multiple layers of electrical tape and damping tape. 

High Q systems such as the undamped bar and the ring (Q=l 100) were not well modeled by the 

adaptive filter. Using longer tap weight vectors (as big as 2000) and increasing the number of iterations 

to as many as 16000 produced only a slight improvement in performance. However, filter performance 

could be improved somewhat by reducing the convergence parameter u by a factor of L as shown in Fig. 

13 using data from the aluminum ring. An optimum value for L of 248 was used in this example by 

plotting error vs. tap weight vector length as was done in Fig. 11. Reducing u shortened the jumps down 

the performance surface that the filter took during each iteration. This method only improved 

performance in the case of high Q systems (Q>100). For low Q systems it drastically increased the error of 

the predicted output. 

E.       RECURSIVE VS. NONRECURSIVE ADAPTIVE FILTERS 

In some cases recursive (IIR) filters outperformed nonrecursive (FIR) filters. Figures 14a and 14b 

show the performance of the adaptive filter (L=48) in predicting the output for a low Q (Q=8) system 

consisting of torsion waves, generated from white noise, traveling in a damped plastic bar. It is clear that 

the IIR filter performs better than the FIR filter. The improvement seen when using the IIR filter is due to 

the denominator term of the IIR filter which allows better modeling of the resonances present in the 

physical system. Similar results were obtained for the other nondispersive systems including those shown 

in Fig. 14c and 14d. These are the results of using torsion waves in a damped (Q=50) aluminum rod 

excited by broadband noise using a tap weight length of 128. 

No improvement or only slight improvement was seen when using an IIR filter in dispersive 

systems as seen in Fig. 15a and 15b for flexural waves excited electromagnetically by broadband noise in 

a damped plastic bar (L=248). This is because in dispersive systems the traveling wave spreads out in 

time. The denominator term in the frequency response found in IIR systems is thus no longer as important 
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Figure  14a    Results Using a FIR Filter on a Nondispersive System 
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in determining the output from the input. Figures 15c and 15d show a similar result for flexural waves in 

a plastic bar generated by broadband noise driving a shaker table. 

Stability is an important consideration in IIR filters. Instability is a result of the existence of poles 

in IIR filters which create a denominator term in the frequency response. Performance surfaces of UR 

adaptive filters may have local minimums and may even be nonquadratic which could lead the tap weight 

vector to converge on a nonoptimal solution. However, no instability problems were seen when using an 

IIR filter on the simple mechanical systems investigated here. When instability was observed (when the 

tap weight vector failed to converge on a tap weight vector) both FIR and IIR filters were unable to 

converge on a tap weight vector for the experiment as discussed in section C of the results. 

Both the FIR and the HR filter performed better on the data from the shaker table experiment 

than on the data from waves generated electromagnetically. The shaker table generated "smoother" 

flexural waves than did the waves generated by electrodynamic transduction. The coils were attached to 

the bar by hand and could not be perfectly aligned to produce purely flexural waves. The electrodynamic 

transduction probably produced shear, longitudinal and torsional waves in addition to the flexural waves 

that were intended which made modeling by the adaptive filter difficult. 

F.        DISPERSIVE VS. NONDISPERSIVE PROPAGATION 

In dispersive systems the adaptive filters generally behaved poorly. Performance was improved by 

using many more iterations than were used for nondispersive systems. While the nondispersive systems 

studied required several hundred iterations, the dispersive systems typically required at least 16000 

iterations to produce a predicted output with a reasonable error. Figure 16 shows the result for flexural 

waves induced electromagnetically in a plastic bar after 4800 and 16000 iterations. Figure 17 shows a 

similar result for flexural waves produced by a shaker table. IIR filters were used for both figures. 

An approach that might be more successful in performing system identification on dispersive 

systems is subband filtering. [Ref. 9] This would involve dividing the input signal into different frequency 
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bands to be acted on by an individual adaptive filter for each band. A number of subband adaptive filter 

algorithms are available which also have the advantage of more closely tracking nonstationary systems. 

G.       COMPARISON WITH CROSS SPECTRAL DENSITY METHOD OF SYSTEM 

roENTTFICATION 

As discussed previously, Eq. 12 is commonly used to estimate the impulse response of single 

input, single output systems. Figure. 18a demonstrates that adaptive system identification produces a 

better estimate of the impulse response than does Eq. 12 for torsion waves in a damped plastic bar. The 

upper plot shows the output produced from an impulse response determined by an adaptive filter with a 

128 element tap weight vector. Then, 128 element long samples were used to determine G« and G^ and 

Eq. 12 was used to determine the frequency response. The inverse FFT of the frequency response was 

taken to determine the impulse response, h(t), which was used to produce the middle plot on Fig. 18a. The 

bottom plot on Fig. 18a compares the error associated with each method. Fig. 18b shows similar results 

for shaker table generated flexural waves in a plastic bar. 
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V. CONCLUSION 

The performance of adaptive filters used for system identification of mechanical systems depends 

greatly on the physical characteristics of that system. The propagation time, Q and dispersiveness of the 

mechanical system must be considered when modeling a mechanical system with an adaptive filter. 

It is desirable to take into account the time necessary for vibration waves to propagate from the 

input of the system to the output so that the algorithm is not utilizing data from mismatched times. This 

was shown to be quite simple in the case of a torsion wave traveling down a plastic bar. However, in 

complex, multipath systems determining this propagation time would be much more difficult. In the 

multipath aluminum plate and ring experiments the performance of the adaptive filter was degraded by 

delaying the input to account for propagation time. More research is required to see if the this concept is 

applicable to a very complex system such as a submarine. 

The high Q systems investigated were not well modeled by the adaptive algorithm. The adaptive 

filters required very small values of the step size parameter u to be effective. The dispersive systems 

studied required many more iterations than nondispersive systems (by a factor of about 20) to determine a 

good estimate of the mechanical impulse response. Again, more research is required to determine what 

role these factors would play in a complex mechanical structure. 

The adaptive filter method of system identification was compared to the more conventional method 

of utilizing the cross spectral and autospectral densities of the input and output signals. For the simple 

mechanical systems studied here the adaptive filter performed better. 

It is hoped that the benefits of considering the physical parameters of a system when performing 

system identification with adaptive filters will also prove valuable to other, more advanced methods of 

system identification. 
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APPENDIX. DERIVATION OF THE CHARACTERISTIC DISPERSION TIME 

In dispersive systems a pulse will spread out in time because its different Fourier components 

travel at different speeds. In order to quantify the effect of the dispersion in "stretching" the pulse over 

time, a "characteristic dispersion time" was defined. This constant is useful in evaluating the convergence 

performance of adaptive filters when modeling dispersive systems. The derivation is begun by stating that 

the angular frequency of the second flexural mode ©2 is related to ©i, the angular frequency of the first 

flexural mode by: 

ffi2 = 2ö>,(l+S2), (Al) 

where s2 is a factor to account for the anharmonic nature of dispersive waves. Multiplying both sides by 

time results in: 

(D2t = 2©,(l+s2)t, (A2) 

which can be reduced to 

<J>2 -24>j =2^52. (A3) 

An arbitrary criteria was selected to describe the point at which the two modes were so out of phase that 

the pulse was appreciably spread out in time. The time for this to occur will be called the characteristic 

dispersion time. This criteria was selected to be: 

©2t - 2©]t = 7t/2. (A4) 

Solving for time gives: 

t = n 12(©2 - 2©i). 

Since the angular frequency is equal to 2% times the frequency in Hertz, 

t = 7C/2(27tf2-47lf,) 

or 

t=l/(4f2-8f,). (A5) 
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Computing the frequencies of the first two modes of fiexural waves in the plastic bar using Eq. 

10 results in fi = 81.7 Hz and f2 = 225.3 Hz. From Eq. A5 this results in a dispersion time constant of 4.0 

ms. 

The characteristic dispersion time for the n01 mode to shift its phase by 7t/2 (a quarter cycle) with 

respect to the nondispersive case (n times the fundamental frequency) can be computed using: 

t= 1/(44-4ni\). (A6) 

A characteristic dispersion time was also calculated for the case of torsion wave propagation. 

Theoretically there should not be any dispersion for torsion waves but due to imperfections in the 

transducers and in the bar itself some dispersion will occur in all practical systems. Additionally, the 

derivation of Eq. 9 assumes that the edge of the bar is rigid and cannot move which is not actually the 

case. The first two torsional resonant frequencies of the damped plastic bar were determined 

experimentally to be 1.112 kHz and 2.15 kHz. Equation A6 was used to give a value of 3.4 seconds for the 

characteristic dispersion time. The time is much longer than for the fiexural wave case because the torsion 

waves are much less dispersive. 
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